Home

>

Study in USA

>

Universities in USA

>

EDUCO - Rose-Hulman Institute of Technology

>

Bachelor of Science in Electrical Engineering (STEM)

Bachelor of Science in Electrical Engineering (STEM)

at EDUCO - Rose-Hulman Institute of Technology USA

Overview

Electrical Engineering (EE) is a professional engineering discipline that deals with the study and application of electricity, electronics, and electromagnetism. Common EE tasks include designing communication systems, energy conversion and power delivery, control systems applications, design of analog and digital systems, and others. Below is a recommended plan of study for EE.

EE Program Educational Objectives

  • Practice excellence in their profession using a systems approach encompassing technological, economic, ethical, environmental, social, and human issues within a changing global environment;
  • Function independently and in leadership positions within multidisciplinary teams;
  • Continue life-long learning by acquiring new knowledge, mastering emerging technologies, and using  appropriate tools and methods;
  • Adapt and independently extend their learning to excel in fields about which they are passionate;
  • Strengthen teams and communities through collaboration, effective communication, public service, and leadership.

EE Student Learning Outcomes

At the time of graduation, students will have demonstrated:

  • An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
  • An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and 2018-2019 Criteria for Accrediting Engineering Programs – Proposed Changes 40 welfare, as well as global, cultural, social, environmental, and economic factors
  • An ability to communicate effectively with a range of audiences
  • An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
  • An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
  • An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
  • An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.
Read More

30

Application Processing Days

Under Graduate

Program Level

Fact & Figures

Full Time On Campus

Study Mode

48

Duration

EDUCO - Rose-Hulman Institute of Technology

Location

Bachelor of Science in Electrical Engineering (STEM) Assistant Fee

$50961

Tuition Fee

$0

Average Cost of Living

$60

Application Fee

Bachelor of Science in Electrical Engineering (STEM) Admissions Requirements

  • Minimum Level of Education Required: To be accepted into this program, applicants must have Grade 12 / High School.
plane

Get superfast admissions at top Bachelor of Science in Electrical Engineering (STEM) institutes in 2024

Benefits of choosing

edmission

Admission’s guaranteed at Top institutes across the world.

Enjoy exclusive application fee waiver’s with Edmissions.

Unlimited FREE Counselling sessions with Edmission’s Experts

Get Tips from industry veterans to crack the IELTS exam in 1 week.

Assistance with scholarships, loans, forex, student accommodation and visa guidance.

Where would you like to study*

Work Permit USA

Optional Practical Training or OPT is a period during which students, who have completed their degrees in the USA, are permitted to work for one year on a student visa by the United States Citizenship and Immigration Services (USCIS). OPT allows students to work for up to 3 years and develop real-world skills to survive in the competitive jobs market.

It is temporary employment for a period of 12-months that is directly related to the major area of study of an F-1 student. Eligible students have the option to apply for OPT employment authorization before completing their academic studies and/or after completing their academic studies.

A student can participate in three types of Optional Practical Training (OPT):

  1. Pre-Completion OPT: This is temporary employment provided to F-1 students before completion of their course of study.
  2. Post-Completion OPT: This is temporary employment available to F-1 students after completing their course of study.
  3. 24 Month STEM Extension: Students enrolled in STEM (Science, Technology, Engineering, and Mathematics) courses can a 24-month extension after their initial Post-Completion OPT authorization. 

Detailed Program and Facts

30

Application Processing Days

Full Time On Campus

Program Intensity

Under Graduate

Program Level

48

Duration

Study Visa

English Test Requirement

6.5

Minimum Overall Score

88.0

Minimum Overall Score

Other Courses by EDUCO - Rose-Hulman Institute of Technology,USA

The Computer Science curriculum prepares students for careers in all areas of the computer industry as well as for graduate studies in computer science and computer related fields. Students have also found a computer science major to be excellent preparation for careers in law, medicine, business administration, industrial engineering, biomedical engineering, and other technical and non-technical fields.

Computer science is a rapidly changing discipline. The lifetime of a particular computer system or software package can be very short. The computer science curriculum is designed to prepare students for multiple careers in a rapidly changing environment. The department’s courses emphasize fundamental concepts and techniques that will last longer than present technology.

Computer science majors complete a core of basic computer science courses that includes the study of algorithms, data structures, database concepts, computer architecture, programming languages, operating systems, and software engineering. Majors also complete important courses in closely related fields, e.g., discrete mathematics, digital logic design, and probability and statistics. The major requires students to study all aspects of the science of computing, including hardware, software, and theory.

Computer Science Student Outcomes

  • Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.
  • Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program’s discipline.
  • Communicate effectively in a variety of professional contexts.
  • Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles.
  • Function effectively as a member or leader of a team engaged in activities appropriate to the program’s discipline.
  • Apply computer science theory and software development fundamentals to produce computing-based solutions.

48 month

Duration

$ 50961

Tuition

Electrical Engineering (EE) is a professional engineering discipline that deals with the study and application of electricity, electronics, and electromagnetism. Common EE tasks include designing communication systems, energy conversion and power delivery, control systems applications, design of analog and digital systems, and others. Below is a recommended plan of study for EE.

EE Program Educational Objectives

  • Practice excellence in their profession using a systems approach encompassing technological, economic, ethical, environmental, social, and human issues within a changing global environment;
  • Function independently and in leadership positions within multidisciplinary teams;
  • Continue life-long learning by acquiring new knowledge, mastering emerging technologies, and using  appropriate tools and methods;
  • Adapt and independently extend their learning to excel in fields about which they are passionate;
  • Strengthen teams and communities through collaboration, effective communication, public service, and leadership.

EE Student Learning Outcomes

At the time of graduation, students will have demonstrated:

  • An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
  • An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and 2018-2019 Criteria for Accrediting Engineering Programs – Proposed Changes 40 welfare, as well as global, cultural, social, environmental, and economic factors
  • An ability to communicate effectively with a range of audiences
  • An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
  • An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
  • An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
  • An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

48 month

Duration

$ 49479

Tuition

The science of light, once confined to research labs and science fiction novels, has found its way into our everyday lives. The applications of optics can be seen everywhere. A list of more common examples of these applications include laser printers, fiber optic communication, internet switches, fiber optic telephone lines, compact disc players, credit cards bearing holograms, grocery checkout scanners, computers and eye surgery. The field of optics is an enabling technology and is growing at a rapid pace. Optical techniques are found in a wide range of areas such as surveying and construction, measurements of material parameters and deformation, flow measurements, communications, machine vision, laser cutting, drilling and welding, data storage, internet switches, optical computers and sensors etc. Surveys show that there is a growing demand for optical designers/scientists/ engineers every year. Opportunities for graduates in Optical Engineering are available in many industries, including automated inspection, consumer electronics, fiber optic communications, optical instrumentation, laser devices, radar systems, data storage etc.

The Optical Engineering bachelor’s degree program is one of the few in the country. This program provides a firm foundation for those interested in continuing thier studies in optics at the graduate level, as well as for those going into industry. The curriculum was developed by the faculty with input from industrial representatives as well as from renowned national and international optics educators. Because of the diverse applications of optics, the curriculum contains a mix of courses in physics and mathematics as well as humanities and social sciences. The Optical Engineering program at Rose-Hulman stresses laboratory instruction. We also encourage students to look at options for a double major, especially Optical Engineering with electrical, computer or mechanical engineering.

OE Program Educational Objectives

  • Our graduates will set their career path and advance beyond their entry-level position or progress toward the completion of an advanced degree.
  • Our graduates will make a positive impact on society.
  • Our graduates will behave ethically and act as responsible members of the engineering and science community.
  • Our graduates will continue to develop professionally

48 month

Duration

$ 50961

Tuition

The Department of Physics and Optical Engineering has provided both science and engineering foundation at Rose-Hulman Institute of Technology through its physics and optics engineering programs. Physics is the foundation subject to all engineering and through the study in engineering physics we aim at blending a strong physics component with relevant engineering backgrounds that are usually necessary to work in areas such as semiconductor, optical technologies, biomedical applications, mechanical, electrical, and civil engineering, and polymer and biochemistry. The students will get their traditional undergraduate engineering education that has a broad foundation in mathematics, engineering sciences and technology. This program emphasizes problem solving skills and an understanding of engineering design to address the needs and challenges of the technology age and allow students to take a broad range of engineering careers.

Engineering Physics at Rose-Hulman will provide students with a unique opportunity to learn the foundation concepts of physics and make a concentrated study in micro and nano technology. Engineering physicist will be able to apply both scientific and engineering approaches to a wide variety of problems which otherwise is not possible with any traditional engineering or science degree. Rose-Hulman’s engineering physics graduates will be trained to take up challenging jobs in engineering and development of new technologies or to pursue further studies in engineering or physics.

EP Program Educational Objectives

  • Our graduates will set their career path and advance beyond their entry-level position or progress toward the completion of an advanced degree.
  • Our graduates will contribute to society locally, nationally or globally
  • Our graduates will collaborate within their organization; and be active in research and development in a relevant area of science and technology.
  • Our graduates will continue to develop professionally.

48 month

Duration

$ 49479

Tuition

As has been done since we awarded the nation’s first degree in chemical engineering in 1889, the undergraduate program in chemical engineering undertakes to prepare individuals for careers in the chemical process industries. These include all industries in which chemical and energy changes are an important part of the manufacturing process, such as the petroleum, rubber, plastics, synthetic fiber, pulp and paper, fermentation, soap and detergents, glass, ceramic, photographic and organic and inorganic chemical industries. In view of the dynamic nature of this technology, the course of study stresses fundamental principles rather than technical details. It prepares the student either for advanced study at the graduate level or for immediate entrance into industry. Opportunities in the process industries are found in a variety of activities, including design, development, management, production, research, technical marketing, technical service, or engineering.

Mission: The mission of the Department of Chemical Engineering at Rose-Hulman Institute of Technology is to provide an excellent chemical engineering education through a combination of theory and practice that prepares students for productive professional careers including postgraduate studies.

Program Educational Objectives
Program Educational Objectives are broad statements that describe what graduates are expected to attain within a few years of graduation.

  • Our graduates will attain a promotion and/or responsibilities beyond their entry-level position, or progress toward the completion of an advanced degree.
  • Our graduates will continue to develop professionally.
  • Our graduates will collaborate professionally within or outside of their organizations at a regional, national and/or international leve

48 month

Duration

$ 49479

Tuition

Biomedical engineers use science, engineering, and mathematics to understand and solve medical problems. We focus on improving people’s quality of life. Biomedical engineers who specialize in biomechanics design and analyze biological systems or medical devices that have to do with forces, stresses, and strains. This includes studying the motions of bodies or joints, fluid flow, the deformation of tissues or materials, and the transport of molecules and chemicals through tissues and across membranes.

Biomedical engineers who specialize in bioinstrumentation use electronics and signal analysis to take measurements from and deliver stimuli to living cells and tissues. Examples include cochlear implants, pacemakers, and patient monitoring equipment. Biomedical engineers who specialize in biomaterials design and study materials to replace, repair, and interact with cells and tissues in the body. Examples include metal, ceramic, polymer, or tissue-engineered implants; these implants can be permanent or biodegradable. The United States Bureau of Labor Statistics has projected that jobs for biomedical engineers will increase by 23% between the years 2014 and 2024.

Biomedical Engineering Student Outcomes

By the time students graduate with an undergraduate Biomedical Engineering degree from Rose-Hulman, they will have:

  • An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
  • An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
  • An ability to communicate effectively with a range of audiences
  • An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
  • An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
  • An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
  • An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

48 month

Duration

$ 50961

Tuition

Software engineering is the creation of software using a process similar to other engineering disciplines. It allows for software to be reliable and developed within time and cost estimates. The software engineering curriculum prepares students for a career in reliable, economical software development.

Programming is only one phase (construction) of software engineering. There are many other aspects of the software engineering process, such as requirements definition, architectural design, and quality assurance, which need to be applied in order to develop reliable software on time and within budget constraints. The software engineering curriculum provides students a solid background in both the theory and practice of all phases in the software engineering process, beginning with their first course of study in the Department of Computer Science and Software Engineering, and continuing to the end of the senior year.

Since software is a non-physical product developed and executed on computers, the software engineering curriculum has computer science as its primary engineering science. The computer science courses taken by software engineering majors include the study of algorithms, data structures, database concepts, computer architecture, programming languages and operating systems. Software engineering majors also complete important courses in other closely related fields, such as discrete mathematics, digital logic design, and engineering statistics.

Software Engineering Student Outcomes

By the time students graduate with a Software Engineering degree from Rose-Hulman, they will be able to:

  • An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
  • An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
  • An ability to communicate effectively with a range of audiences
  • An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
  • An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
  • An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
  • An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

48 month

Duration

$ 49479

Tuition

Software engineering is the creation of software using a process similar to other engineering disciplines. It allows for software to be reliable and developed within time and cost estimates. The software engineering curriculum prepares students for a career in reliable, economical software development.

Programming is only one phase (construction) of software engineering. There are many other aspects of the software engineering process, such as requirements definition, architectural design, and quality assurance, which need to be applied in order to develop reliable software on time and within budget constraints. The software engineering curriculum provides students a solid background in both the theory and practice of all phases in the software engineering process, beginning with their first course of study in the Department of Computer Science and Software Engineering, and continuing to the end of the senior year.

Since software is a non-physical product developed and executed on computers, the software engineering curriculum has computer science as its primary engineering science. The computer science courses taken by software engineering majors include the study of algorithms, data structures, database concepts, computer architecture, programming languages and operating systems. Software engineering majors also complete important courses in other closely related fields, such as discrete mathematics, digital logic design, and engineering statistics.

Software Engineering Student Outcomes

By the time students graduate with a Software Engineering degree from Rose-Hulman, they will be able to:

  • An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
  • An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
  • An ability to communicate effectively with a range of audiences
  • An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
  • An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
  • An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
  • An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

48 month

Duration

$ 50961

Tuition

The science of light, once confined to research labs and science fiction novels, has found its way into our everyday lives. The applications of optics can be seen everywhere. A list of more common examples of these applications include laser printers, fiber optic communication, internet switches, fiber optic telephone lines, compact disc players, credit cards bearing holograms, grocery checkout scanners, computers and eye surgery. The field of optics is an enabling technology and is growing at a rapid pace. Optical techniques are found in a wide range of areas such as surveying and construction, measurements of material parameters and deformation, flow measurements, communications, machine vision, laser cutting, drilling and welding, data storage, internet switches, optical computers and sensors etc. Surveys show that there is a growing demand for optical designers/scientists/ engineers every year. Opportunities for graduates in Optical Engineering are available in many industries, including automated inspection, consumer electronics, fiber optic communications, optical instrumentation, laser devices, radar systems, data storage etc.

The Optical Engineering bachelor’s degree program is one of the few in the country. This program provides a firm foundation for those interested in continuing thier studies in optics at the graduate level, as well as for those going into industry. The curriculum was developed by the faculty with input from industrial representatives as well as from renowned national and international optics educators. Because of the diverse applications of optics, the curriculum contains a mix of courses in physics and mathematics as well as humanities and social sciences. The Optical Engineering program at Rose-Hulman stresses laboratory instruction. We also encourage students to look at options for a double major, especially Optical Engineering with electrical, computer or mechanical engineering.

OE Program Educational Objectives

  • Our graduates will set their career path and advance beyond their entry-level position or progress toward the completion of an advanced degree.
  • Our graduates will make a positive impact on society.
  • Our graduates will behave ethically and act as responsible members of the engineering and science community.
  • Our graduates will continue to develop professionally

48 month

Duration

$ 49479

Tuition

Computer Engineers (CPE) are electrical engineers that have additional training in the areas of software design and hardware-software integration. Common CPE tasks include writing embedded software for real-time microcontrollers, designing VLSI chips, working with analog sensors, designing mixed signal circuit boards, and designing operating systems. Computer engineers are also well-suited for research in the field of robotics, which relies on using computers together with other electrical systems. Below is a recommended plan of study for CPE.

Computer Engineering graduates shall:

  • Practice excellence in their profession using a systems approach encompassing technological, economic, ethical, environmental, social, and human issues within a changing global environment;
  • Function independently and in leadership positions within multidisciplinary teams;
  • Continue life-long learning by acquiring new knowledge, mastering emerging technologies, and using  appropriate tools and methods;
  • Adapt and independently extend their learning to excel in fields about which they are passionate;
  • Strengthen teams and communities through collaboration, effective communication, public service, and leadership.

CPE Student Learning Outcomes

At the time of graduation, students will have demonstrated:

  • An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
  • An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and 2018-2019 Criteria for Accrediting Engineering Programs – Proposed Changes 40 welfare, as well as global, cultural, social, environmental, and economic factors
  • An ability to communicate effectively with a range of audiences
  • An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
  • An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
  • An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
  • An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

48 month

Duration

$ 49479

Tuition

View All Courses by EDUCO - Rose-Hulman Institute of Technology, USA

Top Study Abroad Exams

GRE Exam

The Graduate Record Exam (GRE) is a necessary and popular enteryway exam that learners must pass in order to be acc.. Red More

GMAT Exam

The Graduate Management Admission Test (GMAT) is a well-know evaluation for being accepted into MBA programs. Per... Read More

SAT Exam

The SAT is a Standardized evaluation that is necessary for enrolling in underaduate cur... Read More

Popular Universities to Study Abroad

Study in Canada
Study in USA
Study in UK
Study in NZ
Study in India
Study in UAE

Explore Colleges and Courses in USA

Popular States
Popular Cities
Popular Streams

Trending Blog Posts

edmission

Search, Shortlist, Apply and get accepted! It’s that Simple to pursue your dream to Study abroad with Edmissions. Our team of experts provide you the right guidance that helps you to take admission in your dream college in countries like Canada, the USA, the UK

© 2021-2024 Edmissions - All rights reserved.

TALK TO OUR EXPERTS

whatsapp